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Introduction

A good deal of the Mechanics of Materials can be introduced entirely within the confines of
uniaxially stressed structural elements, and this was the goal of the previous modules. But of
course the real world is three-dimensional, and we need to extend these concepts accordingly.
We now take the next step, and consider those structures in which the loading is still simple, but
where the stresses and strains now require a second dimension for their description. Both for
their value in demonstrating two-dimensional effects and also for their practical use in mechanical
design, we turn to a slightly more complicated structural type: the thin-walled pressure vessel.

Structures such as pipes or bottles capable of holding internal pressure have been very
important in the history of science and technology. Although the ancient Romans had developed
municipal engineering to a high order in many ways, the very need for their impressive system
of large aqueducts for carrying water was due to their not yet having pipes that could maintain
internal pressure. Water can flow uphill when driven by the hydraulic pressure of the reservoir
at a higher elevation, but without a pressure-containing pipe an aqueduct must be constructed
so the water can run downhill all the way from the reservoir to the destination.

Airplane cabins are another familiar example of pressure-containing structures. They illus-
trate very dramatically the importance of proper design, since the atmosphere in the cabin has
enough energy associated with its relative pressurization compared to the thin air outside that
catastrophic crack growth is a real possibility. A number of fatal commercial tragedies have
resulted from this, particularly famous ones being the Comet aircraft that disintegrated in flight
in the 1950’s1 and the loss of a 5-meter section of the roof in the first-class section of an Aloha
Airlines B737 in April 19882

In the sections to follow, we will outline the means of determining stresses and deformations
in structures such as these, since this is a vital first step in designing against failure.

Stresses

In two dimensions, the state of stress at a point is conveniently illustrated by drawing four
perpendicular lines that we can view as representing four adjacent planes of atoms taken from
an arbitrary position within the material. The planes on this “stress square” shown in Fig. 1 can
be identified by the orientations of their normals; the upper horizontal plane is a +y plane, since

1T. Bishop, “Fatigue and the Comet Disasters,” Metal Progress, Vol. 67, pp. 79–85, May 1955.
2E.E. Murphy, “Aging Aircraft: Too Old to Fly?” IEEE Spectrum, pp. 28–31, June 1989.
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its normal points in the +y direction. The vertical plane on the right is a +x plane. Similarly,
the left vertical and lower horizontal planes are −y and −x, respectively.

Figure 1: State of stress in two dimensions: the stress square.

The sign convention in common use regards tensile stresses as positive and compressive
stresses as negative. A positive tensile stress acting in the x direction is drawn on the +x face
as an arrow pointed in the +x direction. But for the stress square to be in equilibrium, this
arrow must be balanced by another acting on the −x face and pointed in the −x direction. Of
course, these are not two separate stresses, but simply indicate the stress state is one of uniaxial
tension. A positive stress is therefore indicated by a + arrow on a + face, or a − arrow on a −
face. Compressive stresses are the reverse: a − arrow on a + face or a + arrow on a − face. A
stress state with both positive and negative components is shown in Fig. 2.

Figure 2: The sign convention for normal stresses.

Consider now a simple spherical vessel of radius r and wall thickness b, such as a round
balloon. An internal pressure p induces equal biaxial tangential tensile stresses in the walls,
which can be denoted using spherical rθφ coordinates as σθ and σφ.

Figure 3: Wall stresses in a spherical pressure vessel.

The magnitude of these stresses can be determined by considering a free body diagram of
half the pressure vessel, including its pressurized internal fluid (see Fig. 3). The fluid itself is
assumed to have negligible weight. The internal pressure generates a force of pA = p(πr2) acting
on the fluid, which is balanced by the force obtained by multiplying the wall stress times its
area, σφ(2πrb). Equating these:

p(πr2) = σφ(2πrb)

2



σφ =
pr

2b
(1)

Note that this is a statically determined result, with no dependence on the material properties.
Further, note that the stresses in any two orthogonal circumferential directions are the same;
i.e. σφ = σθ.

The accuracy of this result depends on the vessel being “thin-walled,” i.e. r � b. At the
surfaces of the vessel wall, a radial stress σr must be present to balance the pressure there. But
the inner-surface radial stress is equal to p, while the circumferential stresses are p times the
ratio (r/2b). When this ratio is large, the radial stresses can be neglected in comparison with
the circumferential stresses.

Figure 4: Free-body diagram for axial stress in a closed-end vessel.

The stresses σz in the axial direction of a cylindrical pressure vessel with closed ends are
found using this same approach as seen in Fig. 4, and yielding the same answer:

p(πr2) = σz(2πr)b

σz =
pr

2b
(2)

Figure 5: Hoop stresses in a cylindrical pressure vessel.

However, a different view is needed to obtain the circumferential or “hoop” stresses σθ.
Considering an axial section of unit length, the force balance for Fig. 5 gives

2σθ(b · 1) = p(2r · 1)

σθ =
pr

b
(3)

Note the hoop stresses are twice the axial stresses. This result — different stresses in differ-
ent directions — occurs more often than not in engineering structures, and shows one of the
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compelling advantages for engineered materials that can be made stronger in one direction than
another (the property of anisotropy). If a pressure vessel constructed of conventional isotropic
material is made thick enough to keep the hoop stresses below yield, it will be twice as strong
as it needs to be in the axial direction. In applications placing a premium on weight this may
well be something to avoid.

Example 1

Figure 6: Filament-wound cylindrical pressure vessel.

Consider a cylindrical pressure vessel to be constructed by filament winding, in which fibers are laid
down at a prescribed helical angle α (see Fig. 6). Taking a free body of unit axial dimension along which
n fibers transmitting tension T are present, the circumferential distance cut by these same n fibers is
then tanα. To balance the hoop and axial stresses, the fiber tensions must satisfy the relations

hoop : nT sinα =
pr

b
(1)(b)

axial : nT cosα =
pr

2b
(tanα)(b)

Dividing the first of these expressions by the second and rearranging, we have

tan2 α = 2, α = 54.7◦

This is the “magic angle” for filament wound vessels, at which the fibers are inclined just enough to-

ward the circumferential direction to make the vessel twice as strong circumferentially as it is axially.

Firefighting hoses are also braided at this same angle, since otherwise the nozzle would jump forward or

backward when the valve is opened and the fibers try to align themselves along the correct direction.

Deformation: the Poisson effect

When a pressure vessel has open ends, such as with a pipe connecting one chamber with another,
there will be no axial stress since there are no end caps for the fluid to push against. Then only
the hoop stress σθ = pr/b exists, and the corresponding hoop strain is given by Hooke’s Law as:

εθ =
σθ
E

=
pr

bE

Since this strain is the change in circumference δC divided by the original circumference C = 2πr
we can write:

δC = Cεθ = 2πr
pr

bE
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The change in circumference and the corresponding change in radius δr are related by δr =
δC/2π, so the radial expansion is:

δr =
pr2

bE
(4)

This is analogous to the expression δ = PL/AE for the elongation of a uniaxial tensile specimen.

Example 2

Consider a compound cylinder, one having a cylinder of brass fitted snugly inside another of steel as
shown in Fig. 7 and subjected to an internal pressure of p = 2 MPa.

Figure 7: A compound pressure vessel.

When the pressure is put inside the inner cylinder, it will naturally try to expand. But the outer
cylinder pushes back so as to limit this expansion, and a “contact pressure” pc develops at the interface
between the two cylinders. The inner cylinder now expands according to the difference p − pc, while
the outer cylinder expands as demanded by pc alone. But since the two cylinders are obviously going to
remain in contact, it should be clear that the radial expansions of the inner and outer cylinders must be
the same, and we can write

δb = δs −→
(p− pc)r

2
b

Ebbb
=

pcr
2
s

Esbs

where the a and s subscripts refer to the brass and steel cylinders respectively.
Substituting numerical values and solving for the unknown contact pressure pc:

pc = 976 KPa

Now knowing pc, we can calculate the radial expansions and the stresses if desired. For instance, the
hoop stress in the inner brass cylinder is

σθ,b =
(p− pc)rb

bb
= 62.5 MPa (= 906 psi)

Note that the stress is no longer independent of the material properties (Eb and Es), depending as it

does on the contact pressure pc which in turn depends on the material stiffnesses. This loss of statical

determinacy occurs here because the problem has a mixture of some load boundary values (the internal

pressure) and some displacement boundary values (the constraint that both cylinders have the same

radial displacement.)

If a cylindrical vessel has closed ends, both axial and hoop stresses appear together, as given
by Eqns. 2 and 3. Now the deformations are somewhat subtle, since a positive (tensile) strain
in one direction will also contribute a negative (compressive) strain in the other direction, just
as stretching a rubber band to make it longer in one direction makes it thinner in the other
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directions (see Fig. 8). This lateral contraction accompanying a longitudinal extension is called
the Poisson effect,3 and the Poisson’s ratio is a material property defined as

ν =
−εlateral
εlongitudinal

(5)

where the minus sign accounts for the sign change between the lateral and longitudinal strains.
The stress-strain, or “constitutive,” law of the material must be extended to include these effects,
since the strain in any given direction is influenced by not only the stress in that direction, but
also by the Poisson strains contributed by the stresses in the other two directions.

Figure 8: The Poisson effect.

A material subjected only to a stress σx in the x direction will experience a strain in that
direction given by εx = σx/E. A stress σy acting alone in the y direction will induce an x-
direction strain given from the definition of Poisson’s ratio of εx = −νεy = −ν(σy/E). If the
material is subjected to both stresses σx and σy at once, the effects can be superimposed (since
the governing equations are linear) to give:

εx =
σx
E
−
νσy
E

=
1

E
(σx − νσy) (6)

Similarly for a strain in the y direction:

εy =
σy
E
−
νσx
E

=
1

E
(σy − νσx) (7)

The material is in a state of plane stress if no stress components act in the third dimension
(the z direction, here). This occurs commonly in thin sheets loaded in their plane. The z

components of stress vanish at the surfaces because there are no forces acting externally in that
direction to balance them, and these components do not have sufficient specimen distance in the
thin through-thickness dimension to build up to appreciable levels. However, a state of plane
stress is not a state of plane strain. The sheet will experience a strain in the z direction equal
to the Poisson strain contributed by the x and y stresses:

εz = −
ν

E
(σx + σy) (8)

In the case of a closed-end cylindrical pressure vessels, Eqn. 6 or 7 can be used directly to
give the hoop strain as

εθ =
1

E
(σθ − νσz) =

1

E

(
pr

b
− ν

pr

2b

)
3After the French mathematician Simeon Denis Poisson, (1781–1840).
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=
pr

bE

(
1−

ν

2

)

The radial expansion is then

δr = rεθ =
pr2

bE

(
1−

ν

2

)
(9)

Note that the radial expansion is reduced by the Poisson term; the axial deformation contributes
a shortening in the radial direction.

Example 3

It is common to build pressure vessels by using bolts to hold end plates on an open-ended cylinder, as
shown in Fig. 9. Here let’s say for example the cylinder is made of copper alloy, with radius R = 5′′,
length L = 10′′ and wall thickness bc = 0.1′′. Rigid plates are clamped to the ends by nuts threaded on
four 3/8′′ diameter steel bolts, each having 15 threads per inch. Each of the nuts is given an additional
1/2 turn beyond the just-snug point, and we wish to estimate the internal pressure that will just cause
incipient leakage from the vessel.

Figure 9: A bolt-clamped pressure vessel.

As pressure p inside the cylinder increases, a force F = p(πR2) is exerted on the end plates, and this
is reacted equally by the four restraining bolts; each thus feels a force Fb given by

Fb =
p(πR2)

4

The bolts then stretch by an amount δb given by:

δb =
FbL

AbEb

It’s tempting to say that the vessel will start to leak when the bolts have stretched by an amount equal to
the original tightening; i.e. 1/2 turn/15 turns per inch. But as p increases, the cylinder itself is deforming
as well; it experiences a radial expansion according to Eqn. 4. The radial expansion by itself doesn’t
cause leakage, but it is accompanied by a Poisson contraction δc in the axial direction. This means the
bolts don’t have to stretch as far before the restraining plates are lifted clear. (Just as leakage begins, the
plates are no longer pushing on the cylinder, so the axial loading of the plates on the cylinder becomes
zero and is not needed in the analysis.)
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The relations governing leakage, in addition to the above expressions for δb and Fb are therefore:

δb + δc =
1

2
×

1

15

where here the subscripts b and c refer to the bolts and the cylinder respectively. The axial deformation
δc of the cylinder is just L times the axial strain εz, which in turn is given by an expression analogous to
Eqn. 7:

δc = εzL =
L

Ec
[σz − νσθ]

Since σz becomes zero just as the plate lifts off and σθ = pR/bc, this becomes

δc =
L

Ec

νpR

bc

Combining the above relations and solving for p, we have

p =
2AbEbEcbc

15RL (π REcbc + 4 ν AbEb)

On substituting the geometrical and materials numerical values, this gives

p = 496 psi

The Poisson’s ratio is a dimensionless parameter that provides a good deal of insight into
the nature of the material. The major classes of engineered structural materials fall neatly into
order when ranked by Poisson’s ratio:

Material Poisson’s
Class Ratio ν

Ceramics 0.2
Metals 0.3
Plastics 0.4
Rubber 0.5

(The values here are approximate.) It will be noted that the most brittle materials have the
lowest Poisson’s ratio, and that the materials appear to become generally more flexible as the
Poisson’s ratio increases. The ability of a material to contract laterally as it is extended longi-
tudinally is related directly to its molecular mobility, with rubber being liquid-like and ceramics
being very tightly bonded.

The Poisson’s ratio is also related to the compressibility of the material. The bulk modulus
K, also called the modulus of compressibility, is the ratio of the hydrostatic pressure p needed
for a unit relative decrease in volume ∆V/V :

K =
−p

∆V/V
(10)

where the minus sign indicates that a compressive pressure (traditionally considered positive)
produces a negative volume change. It can be shown that for isotropic materials the bulk
modulus is related to the elastic modulus and the Poisson’s ratio as

K =
E

3(1 − 2ν)
(11)
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This expression becomes unbounded as ν approaches 0.5, so that rubber is essentially incom-
pressible. Further, ν cannot be larger than 0.5, since that would mean volume would increase on
the application of positive pressure. A ceramic at the lower end of Poisson’s ratios, by contrast,
is so tightly bonded that it is unable to rearrange itself to “fill the holes” that are created when
a specimen is pulled in tension; it has no choice but to suffer a volume increase. Paradoxically,
the tightly bonded ceramics have lower bulk moduli than the very mobile elastomers.

Problems

1. A closed-end cylindrical pressure vessel constructed of carbon steel has a wall thickness of
0.075′′, a diameter of 6′′, and a length of 30′′. What are the hoop and axial stresses σθ, σz
when the cylinder carries an internal pressure of 1500 psi? What is the radial displacement
δr?

2. What will be the safe pressure of the cylinder in the previous problem, using a factor of
safety of two?

3. A compound pressure vessel with dimensions as shown is constructed of an aluminum inner
layer and a carbon-overwrapped outer layer. Determine the circumferential stresses (σθ)
in the two layers when the internal pressure is 15 MPa. The modulus of the graphite layer
in the circumferential direction is 15.5 GPa.

Prob. 3

4. A copper cylinder is fitted snugly inside a steel one as shown. What is the contact pressure
generated between the two cylinders if the temperature is increased by 10◦C? What if the
copper cylinder is on the outside?

Prob. 4

5. Three cylinders are fitted together to make a compound pressure vessel. The inner cylinder
is of carbon steel with a thickness of 2 mm, the central cylinder is of copper alloy with
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a thickness of 4 mm, and the outer cylinder is of aluminum with a thickness of 2 mm.
The inside radius of the inner cylinder is 300 mm, and the internal pressure is 1.4 MPa.
Determine the radial displacement and circumfrential stress in the inner cylinder.

6. A pressure vessel is constructed with an open-ended steel cylinder of diameter 6′′, length
8′′, and wall thickness 0.375′′. The ends are sealed with rigid end plates held by four
1/4′′ diameter bolts. The bolts have 18 threads per inch, and the retaining nuts have
been tightened 1/4 turn beyond their just-snug point before pressure is applied. Find the
internal pressure that will just cause incipient leakage from the vessel.

7. An aluminum cylinder, with 1.5′′ inside radius and thickness 0.1′′, is to be fitted inside a
steel cylinder of thickness 0.25′′. The inner radius of the steel cylinder is 0.005′′ smaller
than the outer radius of the aluminum cylinder; this is called an interference fit. In order
to fit the two cylinders together initially, the inner cylinder is shrunk by cooling. By
how much should the temperature of the aluminum cylinder be lowered in order to fit
it inside the steel cylinder? Once the assembled compound cylinder has warmed to room
temperature, how much contact pressure is developed between the aluminum and the steel?

8. Assuming the material in a spherical rubber balloon can be modeled as linearly elastic
with modulus E and Poisson’s ratio ν = 0.5, show that the internal pressure p needed to
expand the balloon varies with the radial expansion ratio λr = r/r0 as

pr0
4Eb0

=
1

λ2r
−

1

λ3r

where b0 is the initial wall thickness. Plot this function and determine its critical values.

9. Repeat the previous problem, but using the constitutive relation for rubber:

tσx =
E

3

(
λ2x −

1

λ2xλ
2
y

)

10. What pressure is needed to expand a balloon, initially 3′′ in diameter and with a wall
thickness of 0.1′′, to a diameter of 30′′? The balloon is constructed of a rubber with
a specific gravity of 0.9 and a molecular weight between crosslinks of 3000 g/mol. The
temperature is 20◦.

11. After the balloon of the previous problem has been inflated, the temperature is increased
by 25C. How do the pressure and radius change?
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